Instructor Katherine Cliff
The Unit Circle
we rename them the Circular Functions.
\(\cos(0^\circ) = 1\),
\(\cos(90^\circ) = 0\),
\(\cos(180^\circ) = -1\),
\(\cos(270^\circ) = 0\),
\(\cos(360^\circ) = 1\),
\(\sin(0^\circ) = 0\)
\(\sin(90^\circ) = 1\)
\(\sin(180^\circ) = 0\)
\(\sin(270^\circ) = -1\)
\(\sin(360^\circ) = 0\)
\(\cos(0) = 1\),
\(\cos\left(\frac{\pi}{2}\right) = 0\),
\(\cos(\pi) = -1\),
\(\cos\left(\frac{3\pi}{2}\right) = 0\),
\(\cos(2\pi) = 1\),
\(\sin(0) = 0\)
\(\sin\left(\frac{\pi}{2}\right) = 1\)
\(\sin(\pi) = 0\)
\(\sin\left(\frac{3\pi}{2}\right)= -1\)
\(\sin(2\pi) = 0\)
According to the Pythagorean Theorem
\[x^2+y^2 = 1^2.\]
But, we have seen that \(x = \cos(\theta)\) and \(y = \sin(\theta)\) on the unit circle, so
\[(\cos(\theta))^2 + (\sin(\theta))^2 = 1,\]
which is commonly notated as
\[\cos^2(\theta) + \sin^2(\theta) = 1.\]
This is known as the Pythagorean Identity, and it is true for any angle \(\theta\).
Use the Pythagorean identity to find the value of \(\sin(\theta)\) if \(\cos(\theta) = \frac{2}{7}\) and the terminal side of angle \(\theta\) in standard position falls in QIV.
Use the Pythagorean identity to find the value of \(\cos(\theta)\) if \(\sin(\theta) = \frac{2}{5}\) and the terminal side of angle \(\theta\) in standard position falls in QII.
\[\cos\left(\frac{7\pi}{6}\right)\]
\[\sin\left(\frac{3\pi}{4}\right)\]
\[\sin\left(\frac{4\pi}{3}\right)\]
\[\cos\left(\frac{3\pi}{2}\right)\]
\[\cos\left(\frac{13\pi}{6}\right)\]
\[\sin\left(-\frac{2\pi}{3}\right)\]
The other trig functions…
\[\csc\left(\frac{5\pi}{3}\right)\]
\[\tan\left(\frac{2\pi}{3}\right)\]
\[\sec\left(\frac{\pi}{2}\right)\]
\[\cot\left(\frac{4\pi}{3}\right)\]